User Manual

用户手册

交流功率分析仪

AWE2101 系列

Evision beta 3.0 Oct 28, 2012

http://www.aitek.tw sales@aitek.tw

手册内容为印刷版,仍有可能存在错漏,或因技术升级而变更,恕不另行通知。 本产品的名称也可以为:电参数测量仪,电参数测试仪、功率测量仪、功率分析仪等。

开卷致谢

感谢您购买AWE2101系列功率分析仪,为了最大限度的发挥分析仪的功能,请首先仔细阅读该使用手册,并留用随时查阅。

该产品具有众多的测量功能。如果您设置的某个功能,该功能将被保存直到下一次更新设置。

我们已经努力使本手册达到尽善尽美,但很可能仍有某些部分阐述不清,希望您能通过我们的代理商转告或直接致电给我们,在此先表示感谢。

开箱说明

打开包装时,首先检查确认仪器在运输过程中没有损坏,特别是检查一下附件、面板 开关和接头。仪器若有损坏或按照说明不能操作,与经销商或直接致电Aitek联系。

包装包括以下附件,请你认真核对:

- 1. 测量主机 1 台
- 2. 电源线 1 根
- 3. CDR 光盘 1 张(包含电子版说明书和 PC 端驱动程序)
- 4. 用户手册 1 本。
- 5. 带 USB 通讯的机型会附带 USB 通讯线 1 条。
- 6. 带 RS232 通讯的机型会附带 DB9 数据线一条。
- 7. AWE2101E 机型包含钳形互感器 1 个。

校验及校正声明

Aitek特别声明,本手册所列的仪器设备完全符合本公司一般手册上所标称的规范和特性。本仪器在出厂前已经通过本公司的厂内校验。本公司校验用的所有仪器设备都已委请技术监督部门认可的检验中心作定期校正,校验的程序和步骤是符合电子检验中心的规范和标准。

产品质量保证

Aitek保证所制造的新品仪器均经过严格的质量确认,同时保证在出厂一年内,如有发现产品的施工瑕疵或零件故障,本公司负责免费给予修复。但是如果使用者有自行更改电路、功能、或自行修理仪器及零件或外壳损坏等情况,本公司不提供免费保修服务,得视实际状况收取维修费用。如果未按照规定将所有地线接妥或未按照安全规范操作机器而发生异常状况,本公司恕不提供免费保修服务。

本保证不含本机器的附属设备等非Aitek所生产的附件。

在一年的保修期内,请将故障仪器送回本公司维修中心或本公司指定的经销商处,本公司会予以妥善修护。如果本仪器在非正常的使用下、或人为疏忽、或非人力可控制下发生故障,例如地震、水灾、暴动、或火灾等非人力可控制的因素,本公司不予免费保修服务。

手册版权

手册内容有可能因技术升级或存在错漏而变更, 恕不另行通知。

没有本公司书面同意,本手册的全部或部分内容不得抄袭、改编、或以任何形式的出版、传播。

本手册内容如有理解异议,以Aitek技术开发部解释为准。

本产品的名称也可以为:功率计、电参数测量仪、功率测量仪等,本手册以"功率分析仪"作为主要用词。

安全说明

本仪器是按照IEC61010-1安全标准设计的,装运前经过了安全测试。在高压测量时, 测量过程失当会造成触电危险和损坏设备。使用前请仔细阅读该手册,确保完全理解。由 于非产品缺陷引起的任何事故或伤亡,制造商不承担任何责任。

安全标志:

本仪器所引用的安全规范为Safety Class I 的规定(机体具有保护用的接地端子)。本 手册提供仪器安全操作以及保持安全操作条件所需要的信息和警告。使用前仔细阅读以下 安全注意事项。

手册中所用的以下标志表示相对重要的注意和警告:

阅读手册中的安全注意事项。请参考手册上所列的警告和注意说明,以避免人 员受伤害或机器受损。

危险标志,可能会有高电压存在,请避免接触。

接地标志。

安全的工作环境 🛕 🔨

- 在开启本机的输入电源开关前,请先选择正确的输入电压(110V 或220V 输入) 规格。
- 决不能将信号输入端子接在额定电压超过600V的电路上。
- 不允许输入超过最大允许电流、频率, 电流输入端子不允许并联接在电源两端。
- 保持工作环境干燥、无酸碱、易燃、易爆等化学物质和其它腐蚀性气体。
- 必须避免在野外的阳光直射、高温、潮湿和浓雾下使用和存储,这些会造成绝缘层 的老化, 且可能损坏仪。
- 为了避免在运输或移动过程中的震动和冲击造成的仪器损害, 应加以必要的保护, 特别是避免坠落。
- 首次使用前应确保仪器工作正常,没有发生因运输或存储过程中造成的损害。
- 该仪器是被设计为室内使用,且使用环境温度为0~40℃。
- 仪器在移动工作位置时应小心轻放,不得摔掷;
- 为了防止触电危险,请不要掀开机器的盖子。
- 万一发生任何问题, 请立即关闭电源。
- 本仪器的任何立方面不能接受强压、敲击或强应力。
- 请勿带电连接或拆卸测试输入端或输出端的端子。

使用前的准备

拆封和检查

Aitek的产品是包装在一个使用泡绵保护的包装箱内,如果收到时的包装箱有破损,请检查机器的外观是否有变形、刮伤、或面板损坏等。如果有损坏,请立即通知Aitek或其经销商。并请保留包装箱和泡绵,以便了解发生的原因。我们的服务中心会帮您修护或更换新机。在未通知Aitek或其经销商前,请勿立即退回产品。

输入电压的需求和选择

本仪器使用110V AC 或220V AC ± 15% 47-63 Hz 单相的电源。 在开启仪器的电源开关以前,请先确认背板上的电压选择开关,是否放置在正确的位置。 同时必须使用正确规格的保险丝,保险丝使用规格标示在仪器的背板上。 更换保险丝前,必须先关闭输入电源,以避免危险。在接上输入电源之前,必须先确认供电插座的地线已经接妥, 仪器上的电源插头只能插在带有地线的电源插座上。 如果使用延长线,必须注意延长线是否带有接地线。 本仪器是使用三芯电缆线,当电缆线插到具有地线的插座时,即已完成机体接地。

使用的周围环境条件

温度:0°-40°C(32°-104°F)。

相对湿度:在0 到90%之间

手册目录

开卷致谢	1
开箱说明	2
校验及校正声明	3
产品质量保证	
手册版权	5
安全说明	6
使用前的准备	
手册目录	
第一章: 概述	
1-1 仪器描述	
1-2 仪器应用 ————————————————————————————————————	
1-3 仪器原理	
第二章: 仪器功能及指标	
2-1 系列型号说明	
2-2 基本测量指标	
2-3 仪器通用参数 —	
第三章: 仪器结构	
第二早: 仅备结构	
3-1-1 按键及显示窗口描述	
3-2 后面板说明	
第四章: 连接	
4-1 工作电源连接	
4-2 信号电源输入和负载回路连接	
4-3 通讯连接	
4-3-1 USB 连接	
4-3-2 RS232 连接	22
4-3-3 RS485 连接	22
第五章: 功能操作	24
5-1 LED 数码管显示意义	24
5-2 菜单	25
5-3 参数显示	26
5-3-1 测量参数显示	
5-3-2 谐波显示	
5-4 仪器设置	
5-4-1 RS232 波特率设置	27

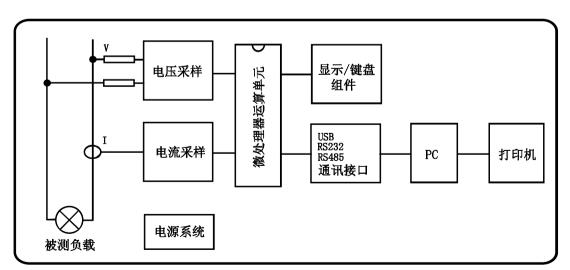
Aitek

		5-4-2 RS232 地址设置	28
		5-4-3 RS485 波特率设置	28
		5-4-4 RS485 地址设置	28
		5-4-5 电压变比设置	28
		5-4-6 电流变比设置	29
		5-4-7 外部电流互感器角度差设置	29
		5-4-8 滤波系数设置	29
		5-4-9 量程锁定	29
		5-4-10 显示亮度调节	-30
		5-4-11 恢复出厂设置	-30
	5-5	报警值设置	-30
		5-5-1 电压上限设定	-31
		5-5-2 电压下限设定	-31
		5-5-3 电流上限设定	-31
		5-5-4 电流下限设定	-31
		5-5-5 功率上限设定	-31
		5-5-6 功率下限设定	-32
		5-5-7 功率因数上限设定	-32
		5-5-8 功率因数下限设定	-32
		电度值清零	
第六章:	PC 🎚	耑软件应用 	-33
	6-1	应用软件安装	-33
	6-2	USB 驱动安装	-35
	6-3	运行软件	-37
		6-3-1 启动软件	-37
		6-3-2 测试窗体介绍	-37
		系统设置	
		6-4-1 通讯设置	39
		6-4-2 报警值设置	-39
		6-4-1 电流输入带宽设置	39
		6-4-1 谐波计算方式设置	39
		测量操作	
		6-5-1 启动测试	39
		6-5-2 单次测试	41
		6-5-3 连续测试	
		谐波查看	
		打印测量参数	
	6-8	保存测量数据	44
	6-9	打开测量数据	44

Aitek

	6-10 记录操作	44
	6-10-1 记录概述	44
	6-10-2 记录窗体介绍	45
	6-10-3 选项设置	46
	6-10-4 新建记录	47
	6-10-5 启动记录	47
	6-10-6 停止记录	47
	6-10-7 打开记录	47
	6-10-8 查看数据	48
	6-10-9 分段查看	48
	6-10-10 压缩查看	48
	6-10-11 隐藏显示信道	48
	6-10-12 放大或缩小信道显示波形 -	48
	6-10-13 打印记录	48
第七章:	仪器的高级编程	50
	7-1 Modbus-RTU 简介	50
	7-2 通信波特率	51
	7-3 通讯接口设置参数	51
	7-3 CRC 循环冗余校验	51
	7-5 通讯中的浮点数据格式	52
	7-6 Modbus-RTU 的数据帧格式	54
	7-7 地址列表	58
第八章:	仪器日常维护事项	60
	8-1 更换保险丝	60
	8-2 清洁仪器	60
	8-3 运送设备维修	60
	8-4 防止触电	60

第一章: 概述


1-1: 仪器描述

AWE2101系列单相功率分析仪是采用32位微处理器,高速高精度A/D转换器为核心的仪器,拥有高精度、高稳定性、17 种参数测量功能、3组显示窗口,每个窗口可以选择显示指定的参数。AWE2101系列单相功率分析仪功能强大,具有USB、RS232、RS485通讯功能(部分型号)。1-50次谐波测量,电流总谐波、电压总谐波测量功能。通过免费的上位机软件,还可以实现启动冲击测试、测量波形显示、长时间参数记录等功能。仪器还可以设定电压和电流的变比,轻易连接外部互感器,满足工业生产,工业控制,电力监控等要求。

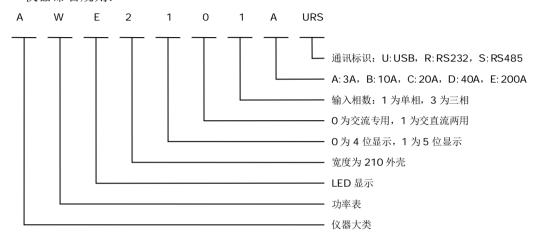
1-2 仪器应用

适用于LCD监视器等信息设备,绿色计算机、电子镇流器、节能灯、环保监视器、开 关电源供应器(S.P.S),不断电系统(UPS),电动工具,信息及办公设备(打印机、扫描仪), 家电,教育单位--等相关产品。也适用于对电网运行质量进行监测及分析,提供电力运行 中的谐波分析及功率质量分析,通过外接互感器能够对大型用电设备在起动或停止的过程 中对电网的冲击进行检测,能够对电网运行进行长期的数据监测。同时配备PC端数据分析 软件,对上传至计算机的测量数据进行各种分析,保存,打印等。

1-3 仪器原理

整机由电压/电流采样电路、微处理器运算电路、显示/键盘电路、 USB/RS232C/RS485通讯电路、PC端软件、电源电路组成。

采样电路分为电压采样和电流采样部分,电压采样采用电阻降压采样,电流采样采用


电流互感器 CT 隔离采样,其各自又包括:信号放大、自动量程处理、抗混迭低通滤波电路、ADC 模数转换器组成。此电路对输入的交流信号进行量化采样,后经微处理器运算电路进行数字运算处理,并把测量数据显示在面板上。

第二章: 仪器指标

2-1 系列型号说明

仪器命名规则:

目前 AWE21xx 系列功率分析仪按输入相数分为单相和三相两种,本手册的内容均指单相功率分析仪,三相功率分析仪有其独立的手册,这里不再说明。按最大输入电流量程分为 A: 最大量程为 3A、B:最大量程为 1OA、C:最大量程为 2OA,D: 最大量程为 4OA,E:最大量程为 200A(外置钳形互感器),A 形功率分析仪符合 1 瓦待机规范。后面三位标识是否带通讯,此三位为空白时不带通讯,手册后面的"PC 端软件应用"章节对此机型失去意义。

型号列表:

型号	描述		
AWE2101A	最大测量电流: 3A, 无通讯接口。		
AWE2101A-U	最大测量电流: 3A,带 USB 通讯接口。		
AWE2101A-UR	最大测量电流: 3A,带 USB、RS232 通讯接口。		
AWE2101A-URS	最大测量电流: 3A,带 USB、RS232、RS485 通讯接口。		
AWE2101B	最大测量电流: 10A, 无通讯接口。		
AWE2101B-U	最大测量电流: 10A, 带 USB 通讯接口。		
AWE2101B-UR	最大测量电流: 10A,带 USB、RS232 通讯接口。		
AWE2101B-URS	最大测量电流: 10A,带 USB、RS232、RS485 通讯接口。		
AWE2101C	最大测量电流: 20A, 无通讯接口。		
AWE2101C-U	最大测量电流: 20A, 带 USB 通讯接口。		
AWE2101C-UR	最大测量电流: 20A,带 USB、RS232 通讯接口。		
AWE2101C-URS	最大测量电流: 20A, 带 USB、RS232、RS485 通讯接口。		
AWE2101D	最大测量电流: 40A, 无通讯接口。		

AWE2101D-U	最大测量电流: 40A, 带 USB 通讯接口。
AWE2101D-UR	最大测量电流: 40A,带 USB、RS232 通讯接口。
AWE2101D-URS	最大测量电流: 40A, 带 USB、RS232、RS485 通讯接口。
AWE2101E-URS	最大测量电流: 200A,外置电流钳,带 USB、RS232、RS485通讯接口。

型号功能列表:

参数	AWE2101x	AWE2101x-U	AWE2101x-UR	AWE2101x-URS	
电压量程	60/125V/250V/500V				
电流量程	x=A: 0.02A/0.1A/0.5A/3A x=B: 0.1A/0.5A/2.5A/10A x=C: 0.2A/1A/5A/20A				
	x=D: 0.4	A/2A/10A/40A x=E: 2	A/10A/50A/200A(外置钳	形互感器	
自动量程	✓	✓	✓	✓	
电压 Trms	✓	✓	✓	✓	
电流 Trms	✓	✓	✓	✓	
峰值电压	✓	✓	✓	✓	
峰值电流	✓	✓	✓	✓	
有功功率	✓	✓	✓	✓	
无功功率	✓	✓	✓	✓	
视在功率	✓	✓	✓	✓	
功率因数 PF	✓	✓	✓	✓	
频率	✓	✓	✓	✓	
电流初相角	✓	✓	✓	✓	
ITHD	✓	✓	✓	✓	
UTHD	✓	✓	✓	✓	
波形系数	✓	✓	✓	✓	
电度计量	✓	✓	✓	✓	
启动电流		✓	✓	✓	
报警		✓	✓	✓	
记 录		✓	✓	✓	
USB 通讯		✓	✓	✓	
RS232			✓	✓	
RS485				✓	

2-2 基本测量指标

	Model	AWE2101	
电压	量程 (4档自动量程)	60/125V/250V/500V	
(V)	显示精度 5位		
	计算方式	数字技术计算真有效值 (True RMS)	

AITCK						
	波形系数			有效值/平均值		
	频率范围			40Hz 至 1000Hz		
	精度 47至63Hz		47至63Hz	读: ±0.1%,range: ±0.1%,总0.2%(在满量程)		
(23℃±5℃)			读: ±0.15%, range: ±0.15%, 总0.3% (在20-110%量程			
		4	OHz至500Hz	读: ±0.25%, range: ±0.25%, 总0.5%		
	最大输入		平均值	500V RMS/707Vpk		
		输入阻抗		大于2.2M ohm 和 10PF在所有量程		
		有效输入范围		1%至110% 在所有量程		
电流	量	程(4档自动量	程)	详细查看系列型号说明		
(A)		显示精度		5 位		
		计算方式		数字技术计算真有效值 (True RMS)		
		波形系数		有效值/平均值		
		频率范围		40Hz 至 120Hz(带宽: 35Hz-5KHz)		
	精度 23℃±	±5°C	47至63Hz	读: ±0.1%,range: ±0.1%,总0.2%(在满量程)		
				读: ±0.15%, range: ±0.15%, 总0.3% (在20-110%量程)		
		4	OHz至500Hz	读: ±0.25%, range: ±0.25%, 总0.5%		
	最大输入		平均值	最大测量电流的 110%		
输入阻		输入阻抗		所有量程<=50 毫ohm		
		有效输入范围		量程的1%至110%在所有量程		
功率	量	程 (自动或手	动)	详细查看系列电压和电流说明		
(W)	(16量程	相应于电压和	电流量程)	根据P=U*I		
		显示精度		5位		
		计算方式		数字技术计算真功率(True Watt)		
		频率范围		40Hz 至 1000Hz		
	精度	47Hz至	PF=0.7~1	读: ±0.15%,range: ±0.15%,总0.3%(在满量程)		
	23℃±5℃	63Hz		读: ±0.25%, range: ±0.25%, 总0.5% (在20-110%量程)		
			PF=0.1~0.7	±0.5%读 ±0.5% range		
		40Hz	至100Hz	±0.5%读 ±0.5%range		
		有效输入范围		量程的1% 至 110% (在 47 至 63Hz)		
				量程的1% 至 120% (在所有量程)		
频率	显示精度/最大精度		度/最大精度 5位 / 0.1Hz			
Hz	计算方式			倒数方法		
	精度 23℃±5℃		C	±0.1%		
	测量触发信号		测量触发信号 电压			
	有效信号电压范围		围	在20%至100%的所有电压量程内		
	有效测量范围		40Hz to 1000Hz			
视在	在 显示精度			5 位		

功率	精度 < ±0.2%,47Hz至63Hz 23℃±5℃	
无功	显示精度	5 位
功率	功率 精度 < ±1%,在47Hz-63Hz,PF=0.7~1。< ±5%,在F	
PF	PF 精度 阻性负载<0.2%,感性和容性负载<2%	

2-3 仪器通用参数

电源输入和外壳耐压	>1000V(1 分钟)		
电源输入和外壳绝缘电阻	>20MOhm		
工作温度	0°-40°C (32°-104°F)。		
相对湿度	在 0 到 90%之间		
电源要求	AC110V 或 230V ±15%, 47 至 63Hz <15VA		
内部 USB	磁耦隔离,2.0全速,最大通讯速率: 12Mbps,和外壳共地		
RS232 通讯速率			
RS232 通讯线允许最大长度	5 米		
内部 RS232	光电隔离,隔离电压>1000V AC,和外壳共地		
RS485 通讯速率	4.8k / 9.6k / 14.4k / 19.2k / 38.4k / 57.6k / 76.8k / 115.2k bps		
RS485 通讯线允许最大长度	4.8-19.2kbps: 500 米,38.4- 76.8kbps: 250 米,115.2 kbps: 100 米		
内部 RS485 隔离方式 光电隔离,隔离电压>1000V AC			
尺寸	宽 213x 高 88x 深 280mm(不含橡胶),宽 226x 高 108x 深 296mm(含橡胶)		
重量	3.2kg		

2-4 引用公式

电压真有效值:
$$Urms = \sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(Ui)^2}$$

电流真有效值:
$$Irms = \sqrt{\frac{1}{n} \sum_{i=0}^{n-1} (Ii)^2}$$

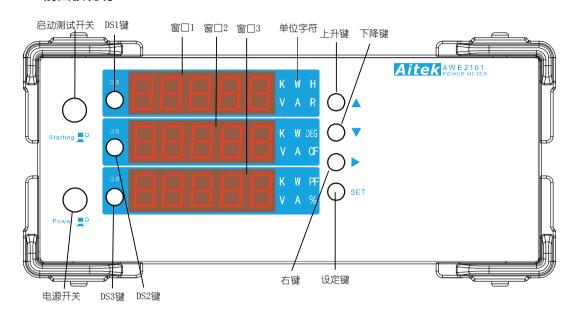
功率:
$$P = \frac{1}{n} \sum_{i=0}^{n-1} UiIi$$

功率因数:
$$PF = \frac{P}{Urms*Irms}$$

总谐波(%f):
$$THD = \sqrt{\sum_{i=2}^{n} (Ci)^2} / C1$$

总谐波(%f):
$$THD = \sqrt{\sum_{i=2}^{n} (Ci)^2} / C1$$

总谐波(%r): $THD = \sqrt{\sum_{i=2}^{n} (Ci)^2} / \sqrt{\sum_{i=1}^{n} (Ci)^2}$


视在功率:
$$VA = Urms * Irms$$

无功功率:
$$VAR = \sqrt{VA^2 - P^2}$$

第三章: 仪器结构

3-1 前面板说明

3-1-1 按键及显示窗口描述:

1. 电源开关:

用来开启或关闭仪器。

2. 启动测试开关:

启动测试开关用作启动测试,只有具有通讯类型的 A 和 B 机型才配备此开关, 其他型号不配备此开关,若配备通讯的其他型号需进行启动测试,请外接启动开关。

▲ 当外接电流互感器时,为了防止互感器次级开路,导致高压产生, 此开关不能开路,或在订货时要求将此开关移除,避免事故。

3. DS1 键:

在测量模式下切换窗口 1 显示: 电压、电流、功率、视在功率、无功功率、频率、电度、峰值电压。在其它模式时实现该模式的其它功能。

4. DS2 键:

在测量模式下切换窗口 2 显示: 电压、电流、功率、视在功率、电流初相角、电压/电流波形系数、峰值电流。在其它模式时实现该模式的其它功能。

5. DS3 键:

在测量模式下切换窗口 3 显示: 电压、电流、功率、视在功率、功率因数、峰值功率。在其它模式时实现该模式的其它功能。

6. 上升键:

用于菜单上翻或设置数值时加一操作。

7. 下降键:

用于菜单下翻或设置数值时减一操作。

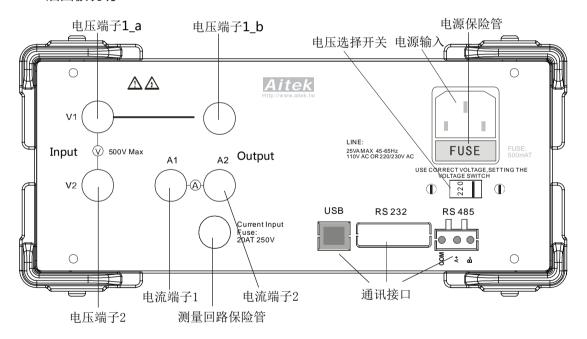
8. 右移键:

在数值设置时向右移动焦点输入位。

9. 设定键:

在测量模式下长按5秒后进入设定菜单,在其它模式下长按5秒后返回测量模式,若在其它模式下存在多个子菜单项,短按设定键进入下一个菜单项。

10. 窗口:


用于显示测量参数或菜单字符。

11. 单位字符:

用于显示其对应窗口测量到的数值的单位,如当测量电压时,单位字符会显示: V,当测量电流时,单位字符会显示: A。

用词说明:长按,按下按键不放,时间长于5秒。 短按,按下按键后马上释放。

3-2 后面板说明

1. 电压端子:

分别为电压端子 1_a、电压端子 1_b、电压端子 2,电压端子 1_a 和电压端子 1_b 在仪器内部直接连通。电压端子 1_a 和电压端子 2 这两个端子输入的是电压信号,与输入信号源并联。

2. 电流端子:

分别为电流端子 A1、A2,这两个端子输入的是电流信号,在任何情况下与

负载串联, 不允许与信号源并联。

3. 测量回路保险管:

这是串联在电流端子 1 和电流 2 之间的保险管,防止负载超载或短路,仅 AWE2101A、AWE2101B 和 AWE2101C 有此保险管。当外接互感器时,为了 防止互感器次级开路,导致高压产生,此保险管的电流额定值必须尽可能地大,如装入 20A 的慢断型保险管。AWE2101D 和 AWE2101E 无此保险管,请在测量电源回路中串联过流保护装置。

4. 电压选择开关:

用于选择仪器工作的电源电压,有 110V 和 220V 选项,用户必须根据电源电压正确设置此开关,误设置会导致仪器损坏。

→ 电源输入插座和电源保险管:

电源输入插座为仪器的工作提供电源,是一个三线插座,其中的地线为保护接地,请确认你的电源供给端已经可靠接地后方可给仪器供电。

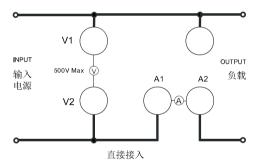
5. 通讯接口:

通讯接口是与其它系统信息交互的桥梁,可与PC,PLC等实现信息交换。本 仪器具备三种通讯方式,分别是USB、RS232、RS485,他们都是采用Modbus 工业通讯协议,具备CRC16校验,通讯可靠,详细请查看"通讯格式说明"章节。

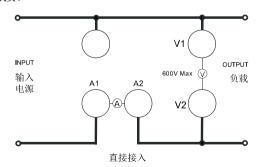
第四章:连接

4-1工作电源连接 🔨

在工作电源连接之前请确认以下事项:

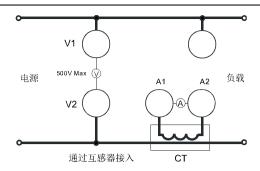

- 1. 电压选择开关的位置是否已经跟工作电源电压一致,否则必须根据电源电压正确设置电压选择开关。
- 2. 确认电源线在干燥洁净不会发生触电漏电危险。
- 3. 供电插座的接地端已经可靠接地。

以上事项已办妥的情况下将电源线的仪器端先插入仪器,再将电源线的另一端插到供电插座上。


4-2 信号电源输入和负载回路连接

电压端子输入为浮空输入,电流端子为电磁隔离输入。电压端子和电流端子是隔离独立的,所以在接线时非常灵活,在这里出示各种型号的接线图。

AWE2101A、AWE2101B、 AWE2101C之直接测量连接:



为直接接入方式,这种方式适用于电流小于仪器最大电流量程的场合 AWE2101D之测量连接:

外部电力互感器测量连接:

通过一个外部互感器 CT 接入,可以测量较大的电流。在连接时要注意极性不能接反,否则测量的数据会有误。AWE2101E 机型所配的钳形互感器的次级直接插到电流端子 A1 和 A2 当中,请注意互感器的红色插头插到 A1,黑色插到 A2 当中。

4-3 诵讯连接

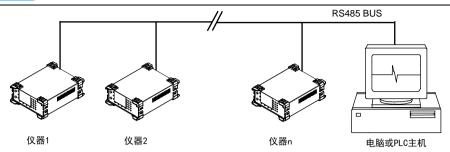
4-3-1 USB 连接

请用标准的 USB 数据线连接在仪器的 USB 接口和计算机的 USB 接口。为了方便用户利用本仪器进行二次开发,本仪器的 USB 已经模拟成为串口,正确连接后可以在计算机的设备管理器中看到。用户如需用 USB 快速地访问本仪器的数据,只需按照 RS232 方式编程便可以了。

4-3-2 RS232 连接

RS232 通讯接口在仪器内部采用光电隔离。

请用标准的 RS232 公母 DB9 数据线连接在仪器的 RS232 接口和计算机的 RS232 接口。长度不易超过 5 米。


本仪器的 RS232 通讯速度可选择,详细查看菜单操作章节,而且主机跟仪器之间的通讯速度必须相等才能正常通讯。

4-3-3 RS485 连接

RS485 通讯接口在仪器内部采用光电隔离,隔离电压大于 1000V 有效值。

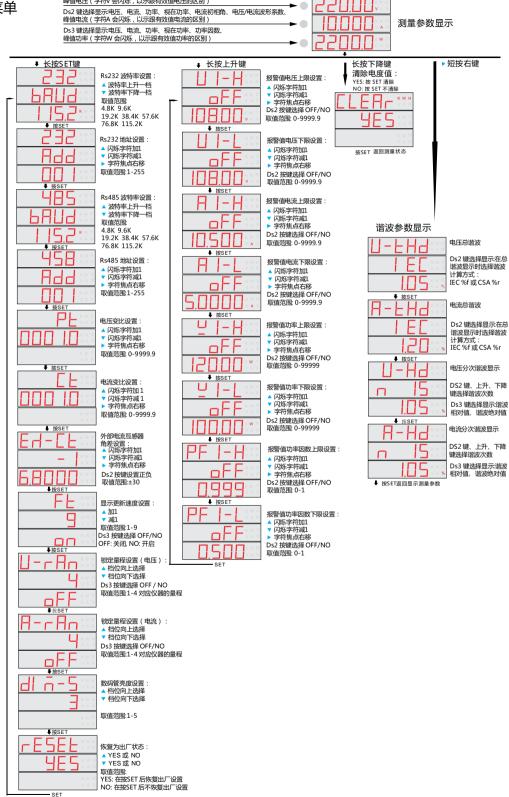
RS-485接口是采用平衡驱动器和差分接收器的组合,抗共模干能力增强,具有良好的抗噪声干扰性,长的传输距离和多从机能力,RS485可以作为一种总线,在从机仪器数量不超过37台的情况下实现单主机(Master)多从机(Slave)架构。而且仪器的通讯协议采用Modbus工业通讯协议,因此用户可以很轻易构建自动测试系统,自动监控系统等,非常方便用户二次开发。有关更多通讯细节详细请查看"通讯格式说明"章节。

RS-485一般只需二根联机,所以RS485接口均采用屏蔽双绞线传输。本仪器的RS485采用半双工通信。采用三个接线端子,两条信号线: A+和B-,一条屏蔽线COM。两条信号线必须与主机的RS485接口正确连接。若有多台仪器组成网络,采用并联的方式将信号线和主机连接。

本仪器的RS485通讯速度可选择,详细查看菜单操作章节,而且主机跟仪器之间的通讯速度必须相等才能正常通讯。

第五章: 功能操作

5-1 LED 数码管显示意义


	1	2	2	3	3
4	4	IJ	5	6	6
7	7		8	<u> </u>	9
	0	П	А	Ь	В
Г	С	D.	D	Е	E
F	F	Б	G	Н	Н
1	I		J	L	K
L	L	וכ	М	С	N
	0	P	Р	П	Q
Г	R	IJ	S	E	Т
Ш	U		>	1	W
Н	Х	4	Υ	Ξ	Z
	-				

量程溢出显示: FULL

Ds1 键选择显示电压、电流、功率、视在功率、无功功率、频率、电度、峰值电压(字符V会闪烁,以示跟有效值电压的区别)

5-2 菜单

在测量模式下长按各自的按键会进入所属的菜单,在所属的菜单中长按 SET 键退出所在菜单,并返回测量模式,若你更改了仪器的设置可记忆数据,将永久地保存在仪器里面。如果菜单处于非测量模式,约 15 秒之内没有按下任何按键,将会自动退出该菜单,返回测量模式。

5-3 参数显示

5-3-1 测量参数显示

测量参数模式为开机运行时的默认模式,上电后第一窗口显示真有效值电压,第二窗口显示真有效值电流,第三窗口显示功率,显示刷新次数大于每秒 10 次。

测量参数的单位字符:

真有效值电压	V/KV	峰值电压	V/KV(单位字符闪烁)
真有效值电流	A/KA	峰值电流	A/KA(单位字符闪烁)
功率	W/KW	峰值功率	W/KW (单位字符闪烁)
视在功率	VA/KVA	无功功率	VAR/KVAR
电流初相角	DEG	电压波形系数	V CF
电流波形系数	A CF	功率因数	PF
电度值	KWH	频率	H(代表 Hz 赫兹)

单位字符指定了显示窗口正在显示哪一个测量参数。量程转换或溢出时数码管显示: FULL

5-3-2 谐波显示

谐波是指周期性的正弦电压、电流或功率的波形发生了畸变。在电力系统中谐波产生的根本原因是由于非线性负载所致。本仪器有两种谐波计算方式:

- 1. %f: 以基波电流(或电压)百分比的方式显示谐波。
- 2. %r: 以包含所有谐波的整个电流的幅值的百分比方式显示谐波。

%r 是在一个信号中以相对整个有效值(基波+谐波分量)的谐波数量百分比表示: %f 是相对基波的百分比表示。不同的标准将需要 %r 或 %f。

总谐波失真(THD)表示在一个信号中以相对整个RMS 值的百分比 [THD %r]或以基波的百分比[THD %f]的谐波数量。它是一个测量波形偏离纯正正弦波程度的数值。 0%表示没有畸变。在仪器设置菜单中可以选择 [THD %r] 或 [THD %f]。

单次谐波相对值是固定为相对于基波而言的。

在测量参数显示模式下短按向右键,便进入谐波查看模式,首先能看到的是电压THD,按顺序短按SET键可进入:电流THD查看菜单、单次电压谐波查看菜单、单次电流谐波查看菜单。在单次电流谐波查看菜单短按SET将返回测量参数显示模式。

单次电压谐波查看菜单和单次电流谐波查看菜单:

5-4 仪器设置

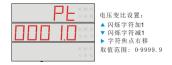
5-4-1 RS232 波特率设置

RS232 波特率定义 RS232 通讯口的通讯速度,当与外部系统通信时双方的 波特率必须一致才能正常通讯。共有 7 种波特率选择。出厂默认值为 115.2 Kbps。 在菜单里更新了此值必须在自动退出菜单返回测量模式前长按 SET 键键 5 秒后方可把设定数据永久性地保存到仪器内,否则设定值只能在当次上电有效。

5-4-2 RS232 地址设置

RS232 通讯的数据格式遵从标准的 Modbus 工业通讯协议, RS232 地址象征着仪器的门牌号码, 外部系统要访问仪器时发送的地址字节必须与仪器——对应方能通讯。出厂默认地址为: 1。更多细节请查看"通讯格式说明"章节。在菜单里更新了此值必须在自动退出菜单返回测量模式前长按 SET 键键 5 秒后方可把设定数据永久性地保存到仪器内,否则设定值只能在当次上电有效。

5-4-3 RS485 波特率设置


RS485 波特率定义 RS485 通讯口的通讯速度,当与外部系统通信时双方的 波特率必须一致才能正常通讯。共有 7 种波特率选择。出厂默认值为 115.2 Kbps。 在菜单里更新了此值必须在自动退出菜单返回测量模式前长按 SET 键键 5 秒后方可把设定数据永久性地保存到仪器内,否则设定值只能在当次上电有效。

5-4-4 RS485 地址设置

RS485 通讯的数据格式遵从标准的 Modbus 工业通讯协议, RS485 地址象征着仪器的门牌号码, 外部系统要访问仪器时发送的地址字节必须与仪器一一对应方能通讯。出厂默认地址为: 1。用户用 RS485 组成网络时必须将网络的从机地址设为不同的值, 避免地址冲突。更多细节请查看"通讯格式说明"章节。在菜单里更新了此值必须在自动退出菜单返回测量模式前长按 SET 键键 5 秒后方可把设定数据永久性地保存到仪器内, 否则设定值只能在当次上电有效。

5-4-5 电压变比设置

电压变比设置菜单是为外接电压互感器而设的,若没有外接电压互感器,请保留 PT 设定值为 1,否则读数将不是真实值。若外接了外部电压互感器,请将外部电压互感器的变比输入此窗口。在菜单里更新了此值必须在自动退出菜单返回测量模式前长按 SET 键 5 秒后方可把设定数据永久性地保存到仪器内,

否则设定值只能在当次上电有效。出厂默认值为1。

5-4-6 电流变比设置

电流变比设置菜单是为外接电流互感器而设的,若没有外接电流互感器,请保留 CT 设定值为 1,否则读数将不是真实值。若外接了外部电流互感器,请将外部电流互感器的变比输入此窗口。在菜单里更新了此值必须在自动退出菜单返回测量模式前长按 SET 键 5 秒后方可把设定数据永久性地保存到仪器内,否则设定值只能在当次上电有效。出厂默认值为 1。

5-4-7 外部电流互感器角度差设置

外部电流互感器角度差设置菜单是为外接电流互感器而设的,若没有外接电流互感器,请保留此设定值为 0,否则读数将不是真实值。若外接了外部电流互感器,请将外部电流互感器的角度差输入此窗口。此设定值会影响功率、视在功率、无功功率的准确测量,用户必须注意。在菜单里更新了此值必须在自动退出菜单返回测量模式前长按 SET 键 5 秒后方可把设定数据永久性地保存到仪器内,否则设定值只能在当次上电有效。出厂默认值为 1。

5-4-8 平滑滤波系数设置

平滑滤波的系数设定,在送往显示输出前,仪器内部会进行采样数据的平滑滤波,滤除跳动信号,个数越大,显示更新速度越慢,测量数据越不易跳动,个数越小,显示更新速度越快,测量数据容易跳动。出厂默认值为 10。在菜单里更新了此值必须在自动退出菜单返回测量模式前长按 SET 键 5 秒后方可把设定数据永久性地保存到仪器内,否则设定值只能在当次上电有效。

5-4-9 量程锁定

在快速的测试系统中,为了减少自动量程档位转换所需的时间,最有效的 方法是锁定量程,即把自动量程功能关闭。当把自动量程功能关闭时,电压和 电流的量程将同时锁定,锁定后在测量过程中如检测到量程溢出,仪器将显示

"FULL",仪器不更新采样值,直到溢出解除。档位的选择应对应你的实际应用值,设定在不至于溢出和尽可能小的档位,以获得最佳的分辨率,使测量精度最佳。在本仪器中,有电压档位和电流档位设定菜单,窗口 2 的档位的数字 1-4 对应仪器的最小量程至最大量程。窗口 3 为量程锁定开关,选择 OFF,量程不锁定,工作于自动量程模式,选择 ON,则工作于量程锁定模式,自动量程失效,电压和电流公用此开关。以下的表格显示了

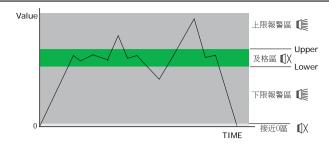
不	同型	早台	5/11	44	\rightarrow	끖	罢	
/ 'I	凹筆	. '	1 U 1		1/.	W.	Ħ.	:

	档位	AWE2101A	AWE2101B	AWE2101C	AWE2101D	AWE2101E
电	1	60 V				
压	2	125V	125V	125V	125V	125V
	3	250V	250V	250V	250V	250V
	4	500V	500V	500V	500V	500V
电	1	0.02A	0.1A	0.2A	0.4A	2A
流	2	0.1A	0.5A	1A	2A	10A
	3	0.5A	2.5A	5A	10A	50A
	4	3A	10A	20A	40A	200A

5-4-10 显示亮度调节

为了适应操作者的视觉适应,可以通过本菜单设定显示亮度,亮度分 0-5 共六个档位。出厂默认值为 3。在菜单里更新了此值必须在自动退出菜单返回测量模式前长按 SET 键 5 秒后方可把设定数据永久性地保存到仪器内,否则设定值只能在当次上电有效。

5-4-11 恢复出厂设置



当恢复出厂设置时,一切用户的设置数据将恢复到出厂时的默认数据。

5-5 报警值设置

电压、电流、功率、功率因数可以作为报警的信号,报警功能采用了上限报警和下限报警的方式。在上限和下限之间有一个及格区域,此区域作为及格品判定。在接近 O 区是电流的一个特例,电压、功率、功率因数没有这一区域,接近 O 区定义为当前电流量程最大值的的±2.5%范围内,象征意义是当负载开关没有开启,没有电流流过时,不发生报警操作。

5-5-1 电压上限设定

当输入电压高于此值,并且电流值不在接近 0 区,发生报警,蜂鸣器鸣叫。 在菜单里更新了此值必须在自动退出菜单返回测量模式前长按 SET 键 5 秒后方可 把设定数据永久性地保存到仪器内,否则设定值只能在当次上电有效。

5-5-2 电压下限设定

当输入电压低于此值,并且电流值不在接近 O 区,发生报警,蜂鸣器鸣叫。在菜单里更新了此值必须在自动退出菜单返回测量模式前长按SET键5秒后方可把设定数据永久性地保存到仪器内,否则设定值只能在当次上电有效。

5-5-3 电流上限设定

当输入电流高于此值,发生报警,蜂鸣器鸣叫。在菜单里更新了此值必须在自动退出菜单返回测量模式前长按SET键5秒后方可把设定数据永久性地保存到仪器内,否则设定值只能在当次上电有效。

5-5-4 电流下限设定

当输入电流低于此值并大于满量程的 0.1%,发生报警,蜂鸣器鸣叫。在菜单里更新了此值必须在自动退出菜单返回测量模式前长按SET键5秒后方可把设定数据永久性地保存到仪器内,否则设定值只能在当次上电有效。

5-5-5 功率上限设定

当测量功率高于此值,发生报警,蜂鸣器鸣叫。在菜单里更新了此值必须在自动退出菜单返回测量模式前长按SET键5秒后方可把设定数据永久性地保存到仪器内,否则设定值只能在当次上电有效。

5-5-6 功率下限设定

当测量功率低于此值,并且电流值不在接近 O 区,发生报警,蜂鸣器鸣叫。在菜单里更新了此值必须在自动退出菜单返回测量模式前长按SET键5秒后方可把设定数据永久性地保存到仪器内,否则设定值只能在当次上电有效。

5-5-7 功率因数上限设定

当功率因数高于此值,并且电流值不在接近 0 区,发生报警,蜂鸣器鸣叫。在菜单里更新了此值必须在自动退出菜单返回测量模式前长按 SET 键 5 秒后方可把设定数据永久性地保存到仪器内,否则设定值只能在当次上电有效。

5-5-8 功率因数下限设定

当功率因数低于此值,并且电流值不在接近 O 区,发生报警,蜂鸣器鸣叫。在菜单里更新了此值必须在自动退出菜单返回测量模式前长按SET键5秒后方可把设定数据永久性地保存到仪器内,否则设定值只能在当次上电有效。

5-6 电度值清零

电度值清零并开始重新累积。

第六章: PC 端软件应用

6-1 应用软件安装

系统需求:

计算机和处理器: 32 位处理器 800MHz 以上

操作系统: Win2000、XP、WIN7 或更高版本(建议使用 XP)

内存: 128MB 以上

硬盘:安装需要 100MB 的硬盘空间,运行需要 50MB 空余空间请取出随机 CD-Rom 光盘,放入计算机的光驱内,找到"应用程序"目录内。第一步:

双击安装图示

第二步:

出现欢迎窗口,单击下一步。

第三步:

在你阅读软件许可协议后选中"我接受该许可证协议中的条款",单价下一步。

第四步:

填入用户信息,单击下一步。

第五步:

选择安装途径,默认的安装途径为操作系统的程序文件夹,你可以单击"更改"键更改。确认后单击下一步。

第六步:

显示基本的安装信息。确认后单击"安装"开始安装软件到你的计算机中。

第七步:

正在安装软件。

第八步:

这样你已成功安装了应用程序,单击完成后退出安装。

6-2 USB 驱动安装

在安装 USB 驱动前请确认应用软件已经正确安装,否则请先安装应用软件。 用 USB 数据线正确连接仪器和计算机,开启仪器电源,将弹出找到新的硬件向导窗口:

按图中选择否选项,单击下一步。

选择:从列表或指定位置安装,单击下一步。

并在其下面的输入框中把途径指定到应用程序的安装目录的 Drivers 文件夹。 单击下一步,开始安装。

在安装过程中会出现徽标测试窗口,单击"仍然继续"按钮。

正在安装软件

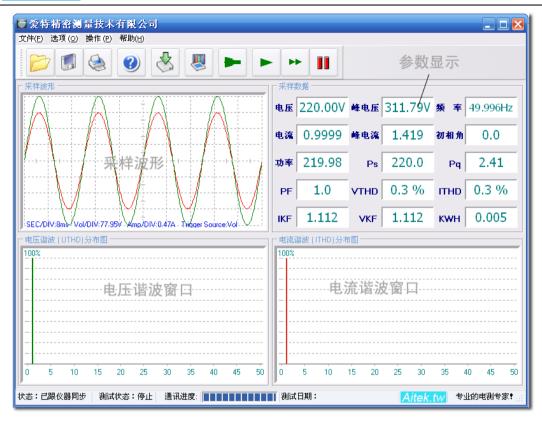
点击"完成",完成 USB 驱动程序安装。

6-3 运行软件

6-3-1 启动软件

在启动软件前请确认应用软件已经正确安装。 有两种方式可以很快捷地启动软件:

1.双击桌面的图示:



2.单击: 开始 / 所有程序 / Aitek / AWE2101 Power Analyzer /

6-3-2 测试窗体介绍

按键说明:

6-4 系统设置

6-4-1 通讯设置

单击菜单的"选项",点击"通讯设置",弹出通讯设置窗口。

通讯速度选项只对 RS232 通讯口起作用,对 USB 而言不起作用,不管设置如何,USB 仍以 2.0 规范的全速速度通讯。RS232 通讯口的波特率必须与仪器的通讯波特率一致才能通讯。软件在打开时会获得串口的数量并列表到通讯设置窗口中,供用户选择。在本仪器中,为了方便用户进行二次开发,将 USB 通讯口模拟成 RS232 串口形式,用户可以用 VB、VC、DELPHI 或其它平台开发工具按照 RS232 串口通讯方式轻易制作出与其通讯的程序。当串口在应用程序打开后发生了改变,例如更换了 USB 插口,请单击"从新扫描通讯口"按钮,将获得更改后的串口号,选中就可以通讯了。仪器通讯地址是为 RS485 组网而设的,地址号码必须与仪器的地址一致,否则仪器不返回任何信息。当用 USB 作为通讯接口时,仪器会忽略地址码,但通讯格式依然遵从 Modbus 工业通讯协议规范。本软件在接收时也会忽略通讯地址。

6-4-2 报警值设置

单击菜单的"选项",点击"报警值设置",弹出报警值设置窗口。

报警值设置窗口的参数是跟仪器同步的,程序在开启时和报警值设置窗口打

开时会跟仪器进行一次通讯,若通讯正常,将读回仪器设置的报警值,并且在报警值设置窗口的右下角显示"已跟仪器数据同步"。

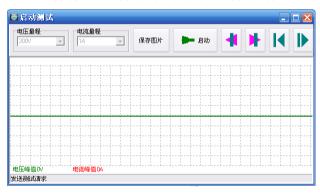
用户也可以在设置的过程中按"读仪器数据"按钮与仪器设置数据同步。

用户可以设置四种参数的上限值,下限值,还可以单独开启和关闭报警设置。 当数据发生变更时,必须单击"保存到仪器"按钮,数据才生效。

6-4-1 电流输入带宽设置(2013年后供货的机型仅能工作干窄频)

单击: 选项 / 输入带宽 / 窄频,设置仪器的电流输入带宽为窄频。

单击:选项/输入带宽/宽带,设置仪器的电流输入带宽为宽带。


6-4-1 谐波计算方式设置

单击:选项/谐波计算方式/CSA,谐波计算方式为%f。 单击:选项/谐波计算方式/IEC,谐波计算方式为%r。

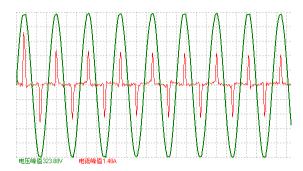
6-5 测量操作

6-5-1 启动测试

启动测试可用测量负载的初始启动电流,逆变器、变频器的瞬间压降特性等, AWE2101 功率分析仪带通讯的机型具备此功能,对无通讯的机型本小节无意义。 单击:操作 / 启动测试可以打开启动测试窗口。

按键说明:

电压量程 3000/	设置电压量程	电流量程	设置电流量程
保存图片	把测量结果保存为图 片	启动	启动测试
4	左移波形	*	右移波形
H	向左压缩显示		向右展开显示


在开始启动测试前,必须根据输入电压设置好电压量程,并根据待测负载的峰值 电流而设置合适的电流量程。吧鼠标移至电压或电流量程设置框将获得焦点。启动测 试能记录 400MS 的启动波形。

启动测试必须以 PC 软件发出请求, 以下是测试步骤:

- 1. 关闭仪器面板的启动测试开关。
- 2. 单击启动测试键。
- 3. 开启仪器面板的启动测试开关。

以下是一幅整流容性负载的启动测试图片:

6-5-2 单次测试

点击 按键能够从仪器读回一帧实时的测量数据。包括波形数据,参数数据,谐波数据等。

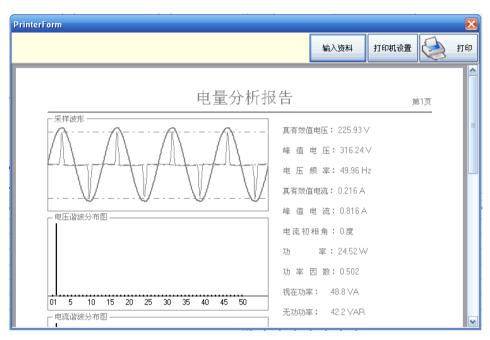
6-5-3 连续测试

点击 按键能够从仪器读回一帧实时的测量数据,显示到屏幕后重复读回

下一帧测量数据,如此重复。直到点击 ■ 停止按键方能停止数据传送。

6-6 谐波查看

点击 按键弹出谐波窗口:


皆被含量分析:	执 古			
谐波次数	电压绝对值	电压相对值	电流绝对值	电流相对值
0	0.11	0.05%	0.00	0.41%
1	226.18	100.00%	0.11	100.00%
2	0.09	0.04%	0.00	1.53%
3	1.71	0.75%	0.1	94.54%
4	0.14	0.06%	0.00	1.53%
5	0.64	0.29%	0.09	85.98%
6	0.08	0.04%	0.00	1.81%
7	0.46	0.2%	0.08	73.39%
8	0.17	0.08%	0.00	2.01%
9	0.37	0.16%	0.06	59.23%
10	0.05	0.02%	0.00	2.32%
11	0.6	0.27%	0.05	44.82%
12	0.06	0.03%	0.00	2.29%
13	0.25	0.11%	0.03	30.65%
14	0.09	0.04%	0.00	2.52%
15	0.39	0.17%	0.02	18.71%
16	0.16	0.07%	0.00	2.18%
17	0.28	0.12%	0.01	10.35%
18	0.06	0.03%	0.00	1.91%
19	0.22	0.1%	0.01	6.64%

谐波窗口显示了 0-50 次的电流和电压的绝对值和相对值, 0 次只对直流版本的功率分析仪有意义,对交流版本的功率分析仪不具作用。

6-7 打印测量参数

点击 🎒 按键打开打印预览页。

用户可以点击输入数据按键输入打印的背景数据:

打印机设置页为标准的 WINDOWS 打印设置页。选定并设置好打印机单击打印按键后开始打印。

6-8 保存测量数据

点击 b 按键弹出保存窗口,要求你选择保存的途径,确定后测量到的数据将保存为文件,方便下次阅读。保存的档后缀名是 aim 檔。

系统默认的名称为 TestFile.aim,用户如果有多个项目需测量,请自行更改文件名,但档的后缀依然为 aim,不得更改,否则软件将无法识别。

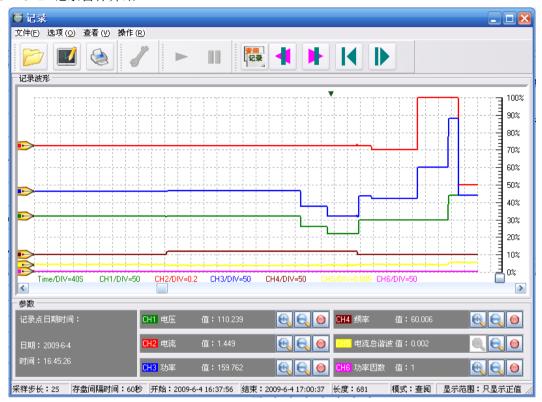
6-9 打开测量数据

点击 按键弹出打开窗口,要求你选择待打开的档,确定后将打开该档,档后缀名是 aim 文件。其它文件软件无法识别。

6-10 记录操作

6-10-1 记录概述

AWE2101 系列功率分析仪带通讯的机型可以使用上位机软件记录功能,不具通讯的机型对本小节无意义。


具有 6 信道同时记录功能,每信道数据可单独选择测量信号。45 万点浮点曲线记录,采样时间可变,最短记录时间:每 1 秒采样一次:记录时长达 125 小时,最长记录时间:每 15 秒采样一次:记录时长达 1875 小时。 方便、灵活的杳看方式,记录曲线一目了然。

记录功能最适合于产品的老化,寿命分析等。例如节能灯、电子镇流器、开 关电源、逆变器、精密变频器、电机等产品的老化试验,均可采用本产品进行全 程数据记录,跟踪参数变化曲线。同时记录功能也适用于电力监控,无人值守获 得用电高峰,空闲数据等。

软件在记录期间可以翻查之前的记录数据,段移显示、压缩系数等,在记录期间还可以打开其它记录文件,而无需中断当前记录。

6-10-2 记录窗体介绍

按键说明:

6-10-3 选项设置

在记录启动前单击 按钮可打开记录设置,在记录期间不允许设置。

输入选择是为信道选择记录信号, 共有 13 种信号供选择, 包括以下参数:

电压	采样值
电流	采样值
功率	采样值
视在功率	采样值
无功功率	采样值
电流初相角	采样值
频率	采样值
功率因数	采样值
电压总谐波	采样值
电流总谐波	采样值
温度 1	与 AITEK 得多路温度巡检仪配合(未来产品)
温度 2	与 AITEK 得多路温度巡检仪配合(未来产品)
温度 3	与 AITEK 得多路温度巡检仪配合(未来产品)

采样步长可选择 1 至 15 秒,不同的采样步长会对应不同的总记录时间:

1S	125 小时	5.2 天
2S	250 小时	10.41 天
3S	375 小时	15.625 天
4S	500 小时	20.83 天
5S	625 小时	26.04 天
6S	750 小时	31.25 天
7S	875 小时	36.45 天
8S	1000 小时	41.66 天
9S	1125 小时	46.87 天
10S	1250 小时	52.08 天

11S	1375 小时	57.29 天
12S	1500 小时	62.5 天
13S	1625 小时	67.7 天
14S	1750 小时	72.91 天
15S	1875 小时	78.125 天

如果用户采用的是RS232通讯,通讯的波特率较低时建议将采样步长加大, 否则根据奈奎斯采样定理,采样点将会重复。具体的建议如下表:

通讯波特率	采样步长
4.8kbps	8S 以上
9.6 kbps	4S 以上
14.4 kbps	3S 以上
19.2 kbps	2S 以上
38.4 kbps-115.2 kbps	15 以上

存盘间隔时间定义了数据写入硬盘的间隔时间,有 10 秒、15 秒、20 秒、25 秒、30 秒、60 秒供选择,选择的时间越小断电时丢失的数据个数越小,原理是假设每秒采样一次,写入硬盘的间隔时间为 10 秒,假如突然断电,那么不能写入硬盘的数据也在 10 次采样之内。但我们不建议用户将数据写入硬盘的间隔时间设得太低,原因是频繁的写硬盘操作会导致硬盘的寿命降低,如非必要,我们建议用户将其数值设在 30 秒或 60 秒。

6-10-4 新建记录

新建记录其实就是新建一个记录文件、让紧接着的数据记录在这文件中。单

击 将弹出对话框,要求你选择文件的保存途径,用户选择了合适的地址后点击确认,新建记录便算成功。

6-10-5 启动记录

在启动记录前必须新建一个记录文件,因为必须要让计算机知道数据将放在

6-10-6 停止记录

单击 按钮可停止记录,为了数据的完整性和真实性考虑,如果你停止了记录,改记录文件将不能续写,你必须新建一个记录文件方能启动记录。

6-10-7 打开记录

单击 按钮弹出打开记录对话框,选定后确定将打开一个之前的记录, 打开记录不会影响当前正在运行的记录。在状态区显示记录文件的一些属性信息。 包括采样步长、存盘时间,显示开始时间,显示结束时间,显示长度。

6-10-8 查看数据

把鼠标移至记录窗体的波形显示区域,我们可以查看单点的记录数据。

其中可以看到记录点的日期、时间、CH1-至 CH6 的输入信号是什么、数值是多少等。

6-10-9 分段查看

单击 或 按钮可以向左或向右移动一段固定长度的记录,也可以拉动波形窗口的滚动条使段前移或后移,段的开始时间和结束时间显示在状态区中。

6-10-10 压缩查看

单击 或 按钮可以向左压缩显示或向右展开显示,也可以双击 波形窗口,拉动显示的刻度条进行段向左压缩显示或向右展开,双击波形窗口后 刻度条隐藏。段的开始时间和结束时间显示在状态区中。

6-10-11 隐藏显示信道

单击各自通道的 **经** 按钮可以屏蔽或开启该信道的显示,该设置将作为打印信道数据的参考,如果你在此屏蔽了某通道,打印时将不再打印该通道。

6-10-12 放大或缩小信道显示波形

因各种信号的大小所在区域的不同,为了适应屏幕显示,用户需要对信号进行不同的放大、缩小后才能观看。在各自的通道均有放大和缩小的按钮开关:

■,点击着两个按钮只改变波形的直观性,不会影响读数的大小,用户根据屏幕的大小而作相当的调整。

6-10-13 打印记录

点击 😂 按键打开打印预览页。

用户可以点击输入数据按键输入打印的背景数据,这与测量数据的打印类似,请参考"打印测量参数"章节。

第七章: 仪器的高级编程

通过仪器的通讯接口,用户可以在其他系统读到仪器的测量参数,编制出用户需要的 实用的控制或测量程序。

仪器具有三种可选的通讯接口,分别为 RS232、RS485、USB。本章内容因仪器之技术升级,仅针对 2013 年 1 月后出货之仪器。

太节的程序	语言会采用缩写字符	F. 加下表所示:
/T* 19 U J / T / T)

缩写字符串	代表意义
u8	无符号8位整数
u16	无符号 16 位整数

7-1 Modbus-RTU 简介

在自动化测量控制系统中,为了在主机和设备之间进行信息交换,RS485串行现场总线被主要用作通讯系统。很多的实际应用已经证明了通过使用现场总线技术,可以节省多至40%的接线、调试及维护的费用。仅仅使用两根电线就可以传送现场设备的所有相关信息,比如输入和输出数据、参数、诊断数据。过去使用的现场总线往往是制造商的特定现场总线,特定通讯协议,与其它现场总线不兼容。现在使用的现场总线几乎是完全公开和标准化的,这就意味者用户可以以最合理的价格选择最好的产品,而不用依赖于设备的每个独立的制造商。Modbus-RTU是一种国际的、开放的现场总线标准。作为一种很容易实现的现场总线协议,在全世界范围内,Modbus-RTU得到了成功的应用。应用领域包括生产过程中的自动化测量、过程控制。

Modbus-RTU定义了一台主机(Master,或称主站设备,在本章节中均称为主机)和若干从机设备(Slave)。主机在网内是唯一的,但从机可以多至37台,每台从机均具有唯一的地址编码,作为通讯的识别码。主机可以是电脑或PLC,是主控设备,可以发起控制命令或请求数据交互。从机是受控设备,可以接受主机控制和发送数据给主机,从机和从机之间直接不能直接通讯。

AWE2101系列功率分析仪的通讯协议均采用Modbus-RTU协议。为了方便用户编程,仪器的USB接口被电脑驱动模拟成为一个虚拟的RS232串口,但请不要担心其通讯速度会有折扣,其依然以USB 2.0规范的全速12Mbps通讯。如果用户采用电脑作为主机,可以根据通用的RS232串口编程方法,用各种不同的电脑IDE(Integrated Development Environment,集成编程开发环境,如VC、VB、Delphi、Eclipse、LabVIEW等)软件编程。 如果用户选用PLC作为控制主机,则可通过RS232或RS485与仪器连接,采用PLC编程开发软件根据Modbus-RTU协议编程。

纵然两种通讯接口的通讯协议是一样的,但USB通讯接口均为一对一接口,较适宜用于一主机一从机的应用,若用户需要实现一主机多从机的应用,请直接选用RS232

或RS485接口机型,连接方法请查阅"RS485通讯连接"部分。

7-2 诵讯波特率

波特率定义了数据交换的通讯速度,当外部系统通过RS232或RS485与仪器互联,选择正确的波特率是必须的,主机和从机的波特率必须一致才能正确通讯。为了适应不同的通讯环境,AWE2101的波特率可以设定为下表所列:

档位	波特率(BaudRate)
1	4.8 Kbps
2	9.6 Kbps
3	14.4 Kbps
4	19.2 Kbps
5	38.4 Kbps
6	57.6 Kbps
7	76.8 Kbps
8	115.2 Kbps

7-3 通讯接口设置参数

接口采用异步传输,单字节结构如下:

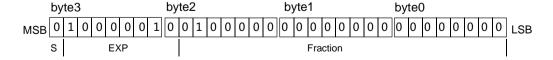
Start Bit (开梦	始位) Data B	it(数据位) Parity	/(奇偶校验位) Sto	Stop (停止位)	
1 bit		8 bit	None (无)	1 bit	

你的主机的通讯接口属性必须和上面一样才能正常通讯。

7-4 CRC 循环冗余校验

即使最好的通讯硬件系统,都无法保证所传送的数据是 100%正确的,举一个简单的事例说明:当系统正在传送某个数据包,但因为某种未知原因,或突然受外部 EMC 干扰,导致通讯线路的电平不能正确定位,那么从机所收到的数据将无法保证其正确性。循环冗余校验(Cyclical Redundancy Check)是一种查错算法,发送方对待发数据进行多项式计算,并将得到的结果附在帧的后面,接收设备在接收到数据后也执行类似的算法,然后与发送方的 CRC 结果进行对比,如果相等,则数据正确,否则数据有误,接收方可请求发送方重新发送数据,这样保证数据传输的正确性和完整性。

常用的 CRC 算法有 CRC16 和 CRC32 算法,本仪器采用 CRC16 算法。下面给出两种语言之实例:


```
wCrc^=(u16)(pBuf[i]);
                         //CRC 寄存器和数组成员异或
   for(j=0;j<8;j++)
                         //位循环
      if(wCrc & 1)
                           //如果 CRC 寄存器和 1 与不等于 0
      {
         wCrc>>=1;
                           //wCrc 右移一位
         wCrc^=0xa001;
                           //CRC 寄存器和 bin:1010000000000001 异或
                           //如果 CRC 寄存器和 1 与等于 0,右移一位
     else wCrc>>=1;
    }
   return wCrc;
/*16 BitCRC 校验码获取 C 程序结束*/
/*16 BitCRC 校验码获取 Pascal 程序*/
function GetCRC(Data:Array of byte;Length:integer): word;
var
wCrc:word;
i,j:word;
begin
  wCrc := $ffff;
                             //CRC 寄存器置全 1
  for i:=0 to Length-1 do
                            //数组长度循环
                           //CRC 寄存器和数组成员异或
      wCrc:=wCrc xor Data[i];
      for j:=0 to 7 do
                           //位循环
         begin
                                      //如果 CRC 寄存器和 1 与不等于 0
             if (wCrc and 1)<>0 then
                                        //wCrc 右移一位
                    wCrc:=wCrc shr 1;
                    wCrc:=wCrc xor $a001; //CRC 寄存器和 bin:101000000000001 异或
                end
                                       //如果 CRC 寄存器和 1 与等于 0,右移一位
             else wCrc:=wCrc shr 1;
         end;
      end;
   Result := wCrc;
/*16 BitCRC 校验码获取 Pascal 程序结束*/
```

7-5 通讯中的浮点数据格式

数据排列安照 ANSI/IEEE Std 754-1985《IEEE Standard for Binary Floating-Point Arithmetic》标准,字节顺序采用小端格式(Endian Mode: Little)。

7-5-1 32 位 Float 格式

32 位元单精度浮点数 4 字节组成, 格式如下:

Bit31: S 为符号位, S=1 表示浮点数为负数, S=0 表示浮点数为正数。

Bit30-23: EXP 为 8 位元阶码。

Bit22-0: Fraction 为 22 位元分数部分。

浮点数值 = $\pm (1 + Fraction * 2^{-23}) \times 2^{EXP-127}$

浮点数的正负取决于符号位。

例如,当 32 位浮点数 byte3=41H、byte2=20H、byte1=0H、byte0=0H,即 S=0、EXP=130、Fraction= 2^{21} ,那么根据上式,得:

浮点数值 =
$$(1 + 2^{21} * 2^{-23}) \times 2^{130-127} = 10.0$$

7-5-2 64 位 Double 格式

64 位元双精度浮点数采用 8 字节组成,格式如下:

Bit63: S 为符号位, S=1 表示浮点数为负数, S=0 表示浮点数为正数。

Bit62-52: EXP 为 11 位元阶码。

Bit51-0: Fraction 为 52 位元分数部分。

浮点数值 =
$$\pm (1 + Fraction * 2^{-52}) \times 2^{EXP-1023}$$

浮点数的正负取决于符号位。

例如,当 64 位浮点数 byte7=40H、byte6=24H、byte5=0H、byte4=0H、byte3=0H、byte2=0H、byte1=0H、byte0=0H,即: S=0、EXP=1026、Fraction=2²¹,那么根据上式,得:

浮点数值 =
$$(1 + 2^{50} * 2^{-52}) \times 2^{1026-1023} = 10.0$$

7-5-3 byte 转换为浮点

上述介绍了单精度浮点数和双精度浮点数的组成,在面向对象的编程过程中,用户应该避免复杂的数据转换运算,例如当用户接收到字节数据,需要将内码转换成浮点,或要将浮点转换成字节内码,直接采用内存复制是最佳的做法,非常省时,可有效避免运算时的数据丢失。

以下代码是不错的转换实例:


```
unsigned char Byte[4];
   }FloatData:
   FloatData.Data=Data:
  ByteData[0]=FloatData.Byte[0];
   ByteData[1]=FloatData.Byte[1];
   ByteData[2]=FloatData.Byte[2];
  ByteData[3]=FloatData.Byte[3];
/*以下是直接拷贝内存的 C 程序, 用指针实现*/
void BufToBufCopy(u8 *SourceByteData,u8 *TargetByteData,u16 Length)
 u16 i:
 for(i=0;i<Length;i++)
   TargetByteData[i]=SourceByteData[i];
 }
我们可以这样引用这个例子:
BufToBufCopy ( &字节队列, (u8*)&浮点数, 长度); //引用
字节队列为你接收到的字节数组,浮点数为你将要得到的数据,浮点数为 float 时,长度为 4,浮点数为 double 时,长度为 8.
```

7-6 Modbus-RTU 的数据帧格式

数据组成遵从 Modbus-RTU 协议,以下所说的主机是指 PC 或 PLC 可编程控制器,所指的从机是指 APN1001 系列仪器。所涉及的数字如以 0x 开头均为十六进制数字下面分 6 种情况说明数据组成结构。

7-6-1 主机请求读数据

byte1						byte8		
Slave Address		Starting Address Hi					CRC Data Hi	

共8字节组成, byte1 首先发送, 各字节功能及意义如下:

Slave Address: 从机地址,这里指仪器的地址值,在网内是唯一的身份标识,也表示主机将要指定和哪一台从机通讯的唯一识别码。

Function code: 功能号,或功能码,用于识别此通讯帧的功能或作用,请求读功能号固定为: 0x03。

Starting Address Hi: 起始地址,高字节,起始地址为十六位无符号整数,代表着将要读的第一个数据的地址值。

Starting Address Lo: 起始地址,低字节,与 Starting Address Hi 构成一个十六位的无符号整数。

No.of Data Hi: 读数据长度高字节,表示将要读取多少字(Word, 2 byte 为 1 字)。 数据长度为十六位无符号整数。如将要读一个 word,其值为 1, 将要读 1 个单精度 (float) 浮点数,其数据长度为 2,同理要读 1 个双精度 (double) 浮点数,其值为 4。当需要读取两个或以上的 数据时,可以把这两个数据的总字节处以 2 作为读数据长度,如需

要读取三个连续地址的 float 浮点数,长度为: 3*4/2=6 字节,这样,

仪器将返回 12 个有效的 byte 数据,用户可以分拆为 3 个浮点数。

No.of Data Lo: 数据长度,低字节,与 No.of Data Hi 构成一个十六位的无符号整

CRC Data Lo: CRC 校验码,低字节,CRC 校验码为十六位无符号整数。

CRC Data Hi: CRC 校验码, 高字节, CRC 校验码为十六位无符号整数。

以下是一个读地址为 6D 的实例:

1 byte	2 byte	3 byte	4 byte	5 byte	6 byte	7 byte	8 byte
从机地址	功能号	起始地址	起始地址	长度 Hi	长度 Lo	CRC Lo	CRCHi
01	03	00	6D	00	04	D5	D4

7-6-2 从机正常应答

byte1				, ,			byteN
Slave Address	Function Code	Data Count	Data	Dat/	Data	CRC Data Lo	CRC Data Hi

byte1 首先发送,各字节功能及意义如下:

Slave Address: 返回的从机地址,这里指仪器的地址值,其意义是告诉主机,该

数据包是属于哪一台从机的。

Function code:功能号,用于告诉主机此通讯帧的功能或作用,返回的读功能号

与请求读的功能号是一样的,固定为: 0x03。

Data Count: 将返回多少个有效的数据 byte。

Data: 有效的数据 byte。

CRC Data Hi: CRC 校验码,高字节,CRC 校验码为十六位无符号整数。CRC Data Lo: CRC 校验码,低字节,CRC 校验码为十六位无符号整数。

以下是一个返回 4 字节 float 的实例:

1 byte	2 byte	3 byte	4 byte	5 byte	6 byte	7 byte	8 byte	9 byte
从机地均	上 功能号	字节长度	Byte 1	Byte 2	Byte 3	Byte 4	CRC Lo	CRCHi
01	03	04	2C	04	5C	43	СВ	93

返回的 float 浮点数为: 220.016。

7-6-3 从机异常应答

byte1				byte5
Slave	Function	Error	CRC	CRC
Address	Code	Code	Data Lo	Data Hi

共5字节组成, byte1 首先发送, 各字节功能及意义如下:

Slave Address: 返回的从机地址,这里指仪器的地址值,其意义是告诉主机,该数据包是属于哪一台从机的。

Function Code: 功能号,用于告诉主机此通讯帧的功能或作用,返回的读功能号与请求读的功能号是一样的,固定为: 0x03。

Error Code: 异常应答码。

CRC Data Lo: CRC 校验码,低字节,CRC 校验码为十六位无符号整数。CRC Data Hi: CRC 校验码,高字节,CRC 校验码为十六位无符号整数。

以下是一个返回读取错误的实例:

1 byte	2 byte	3 byte	4 byte	5 byte
仪器地址	功能号	错误代码	CRC 低	CRC 高
01	84	01	82	C0

异常应答功能号=0x84。

从机异常应答码说明:

1: 不支持的地址或地址连读溢出。

7-6-4 写仪器

byte1					,	,		byteN
Slave Address	Function code		No.of Registers Lo	No.of Byte	Dat/	· <u>/</u>	Data	CRC Data Hi

byte1 首先发送,各字节功能及意义如下:

Slave Address: 从机地址,这里指仪器的地址值,在网内是唯一的身份标识,也表示主机将要指定和哪一台从机通讯的唯一识别码。

Function code: 功能号,用于识别此通讯帧的功能或作用,写功能号固定为: 0x10。

Starting Address Hi: 起始地址,高字节,起始地址为十六位无符号整数,代表着将要写的第一个数据的地址值。

Starting Address Lo: 起始地址,低字节,与 Starting Address Hi 构成一个十六位的无符号整数。

No.of Registers Hi: 写数据寄存器长度高字节,表示将要连续写多少个寄存器。写 寄存器长度为十六位无符号整数。由于 AWS2103 系列功率分析仪具有 多种不同的数据类型,故 No.of Registers 的最小单位以字(Word, 2 byte 合成一个 Word) 为单位,如一个 float 有 2 个 Word 合成,这请用户注意。

No.of Registers Lo: 写数据长度,低字节,与 No.of Data Hi 构成一个十六位的无符号整数。

No.of Byte: 写数据字节长度,表示将要写多少个有效字节到从机中。如将要写一个 byte 的数据,其值为 1,将要写一个 word,其值为 2,将要写 1 个单精度(float)浮点数,其数据长度为 4,同理要写 1 个双精度(double)浮点数,其值为 8。当需要写两个或以上的数据时,可以把这两个数据的总字节作为读数据长度,如需要写三个连续地址的 float 浮点数,长度为 12 字节。

CRC Data Lo: CRC 校验码, 低字节, CRC 校验码为十六位无符号整数。

CRC Data Hi: CRC 校验码,高字节,CRC 校验码为十六位无符号整数。

以下是一个写的实例:

byte1	byte2	byte3	byte4	byte5	byte6	byte7	byte8	byte9	byte10	byte11	byte12	byte13
01	10	00	0B	00	02	04	00	00	5C	43	CA	ED

写仪器功能号=0x10。该实例中,将写四字节 float 数 220.0 到地址为 0X0B 的寄存器中。

7-6-5 成功写应答

当成功写数据到仪器后, 仪器会返回成功确认信号。

byte1 byte5

Slave Address Code Registers Address CRC Data Lo Data Hi

共5字节组成, byte1 首先发送, 各字节功能及意义如下:

Slave Address: 返回的从机地址,这里指仪器的地址值,其意义是告诉主机,该

数据包是属于哪一台从机的。

Function Code: 功能号,用于告诉主机数据已经成功写入仪器,成功写功能号固

定为: 0x09。

Registers Address: 寄存器地址。

CRC Data Lo: CRC 校验码,低字节,CRC 校验码为十六位无符号整数。CRC Data Hi: CRC 校验码,高字节,CRC 校验码为十六位无符号整数。

以下是一个返回成功写的实例:

1 byte	2 byte	3 byte	4 byte	5 byte
仪器地址	功能号	寄存器地址	CRC 低	CRC 高
01	09	0B	67	97

成功写功能号: 0x9

7-6-6 失败写应答

当要写的数据到仪器失败后, 仪器会返回失败确认信号。

byte1 byte5

Slave Address Code Code Code CRC Data Lo CRC Data Hi

共 5 字节组成, byte1 首先发送, 各字节功能及意义如下:

Slave Address: 返回的从机地址,这里指仪器的地址值,其意义是告诉主机,该数据包是属于哪一台从机的。

Function Code: 功能号,用于告诉主机此通讯帧的功能或作用,返回的读功能号

与请求读的功能号是一样的,固定为: 0x90。

Error Code: 异常应答码。

CRC Data Lo: CRC 校验码,低字节,CRC 校验码为十六位无符号整数。CRC Data Hi: CRC 校验码,高字节,CRC 校验码为十六位无符号整数。

以下是一个返回读取错误的实例:

1 byte	2 byte	3 byte	4 byte	5 byte
仪器地址	功能号	错误代码	CRC 低	CRC 高
01	90	01	8D	C0

异常应答功能号=0x90。

从机异常应答码说明:

1: 不支持的地址或地址连读溢出。

7-7 地址列表

通讯地址映像

地址	说明	R/W 说明	值属性	数据说明
01	真有效值电压	R	Float	第一组数据,每个数占位4字节,
02	峰值电压	R	Float	支持组内连读功能,每次主机请求
03	频率	R	Float	的数据长度必须在组以内,而且必
04	真有效值电流	R	Float	须以通讯时的起始地址开始计算,
05	峰值电流	R	Float	最后发送的数据不能超过组尾地
06	电流起始相位	R	Float	址: 15。例如开始地址为 06: 电
07	功率因数	R	Float	流起始相位,则最后的数据只能为
08	有功功率	R	Float	15: 电度值,超过该地址值将返
09	视在功率	R	Float	回错误信息。电度值写 0 将清除
10	无功功率	R	Float	电度值,写其它数值无效。
11	电压总谐波	R	Float	
12	电流总谐波	R	Float	
13	电压波形因子	R	Float	
14	电流波形因子	R	Float	
15	电度值	R/C	Float	
16-66	0-50 次电压谐波	R	Float	第二组数据,每个数占位4字节,
	值			支持组内连读功能,每次主机请求
				的数据长度必须在组以内,而且必
				须以首地址开始计算,长度不能超
				过组尾地址: 66。
67-117	0-50 次电流谐波	R	Float	第三组数据,每个数占位4字节,
	值			支持组内连读功能,每次主机请求
				的数据长度必须在组以内,而且必
				须以首地址开始计算,长度不能超
				过组尾地址: 117。

118	A 路报警上限	R/W	Float	4 字节
119	A 路报警下限	R/W	Float	4 字节
120	B 路报警上限	R/W	Float	4 字节
121	B 路报警下限	R/W	Float	4 字节
122	C 路报警上限	R/W	Float	4 字节
123	C 路报警下限	R/W	Float	4 字节
124	D 路报警下限	R/W	Float	4 字节
125	D 路报警下限	R/W	Float	4 字节
126	报警 ON/OFF	R/W	32Bit 无符号整形	注悉 1
127	FT	R/W	Float	滤波系数
128	设定	R/W	4 Byte	上位机设定仪器,注悉 2
129-146	系统保留			
147	启动测试数据	R/W	10248 Byte	
148	测量数据	R	混合数据	2526 采样数据+2 字节 CRC

R: 读, W: 写, C: 可清除。

注悉 1: 地址 126 设定说明

BitO=O: 第一路报警上限值开启。BitO=1: 第一路报警上限值关闭

Bit0=1: 第一路报警下限值开启。Bit1=1: 第一路报警下限值关闭

Bit0=2: 第二路报警上限值开启。Bit2=1: 第二路报警上限值关闭

Bit0=3: 第二路报警下限值开启。Bit3=1: 第二路报警下限值关闭

Bit0=4: 第三路报警上限值开启。Bit4=1: 第三路报警上限值关闭

Bit0=5: 第三路报警下限值开启。Bit5=1: 第三路报警下限值关闭

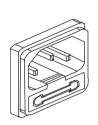
BitO=6: 第四路报警上限值开启。Bit6=1: 第四路报警上限值关闭

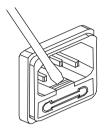
BitO=7: 第四路报警下限值开启。Bit7=1: 第四路报警下限值关闭

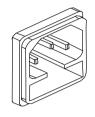
注悉 2: 地址 128 设定说明

地址 128 是一个无符号 32 位整形,这里只用到了 byteO 的低两位,其他位请保持为 0,byteO 低两位说明如下:

Bit0=0: 窄频。Bit0=1: 宽带


Bit1=0: IEC 方式。Bit1=1: CSA 方式




第八章: 仪器日常维护事项

8-1 更换保险丝

当发现仪器无显示时,请按下列顺序检查保险管是否熔断,若已经熔断,请更 换保险管,否则,请寻求 Aitek 或其指定的经销商给予维护。

8-2 清洁仪器

可以使用粘有温柔清洁剂的、湿的软布,轻轻的擦拭。不允许使用有溶解能力的,如苯、酒精、丙酮、醚、酮、稀释剂和汽油等,因为它们会使仪器的外壳变形和表面脱色。

8-3 运送设备维修

请妥善包装好,以防运输过程中损坏。包围缓冲材料,防止仪器在箱内摇摆活动。我们对运输过程中的损坏不负任何责任。

8-4 防止触电

为了防止触电危险,请不要掀开机器的盖子,输入输出端子必须可靠接线,不允许有线金属外露。 本机器内部所有的零件,绝对不需使用者的维护。如果机器有异常情况发生,请寻求Aitek或其指定的经销商给予维护。